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Research Questions:

 Why do some La Ninas lead to summer droughts, whereas
others do not?

* s there spring to summer drought memory? If so, how
important is such memory in determining the summer
drought? what process is responsible for such a drought
memory?

* s it possible to provide an early warning of the summer
drought based anomalous large-scale atmospheric and land
surface conditions in spring?




Datasets:

* North American Regional Reanalysis (NARR), soil moisture, 0.25 by
0.25 degree, daily, from, 3hourly from Jan. 1979-Dec. 2013, about
32 km resolution.

 NCEP/NCAR reanalysisl fields, 2.5 by 2.5 degree, monthly from
Jan.1948-Dec. 2013

 CRU TS3.21 precipitation, 0.5 by 0.5 degree, monthly from Jan.
1901- Dec. 2012

e Essential Climate Variable (ECV) soil moisture data

Merged product from blending active and passive soil moisture
products, derived from SMMR, SSM/I, TMI and ASMR-E , AMI-WS
and ASCAT

.= CFSR (1982-2010)+CFSV2 realtime Mar 2011-Dec 2012
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* Why do some La Nina events lead to summer
droughts whereas other do not?




* La Ninas associated with summer droughts over SGP show
a stronger low-level anticyclonic circulation over SC and
SE US and warm SSTA in the N. Atlantic in DJF and
MAM.

MAM
Differences
M ; IQ'D M /. N

Composite differences
of the 700 hPa 7’ and
SSTA between La Nifias
with subsequent
summer droughts (3)
and the La Ninas
without summer
droughts (15) over SGP
for the period of

-1.2




The influence of the anomalous anticyclonic
circulation on convection

* Rainfall source changes from extratropical synoptic disturbances to
tropical thermodynamic driven convection during spring over SGP.

* Anomalous subsidence increase of T700hPa and CIN. The latter
suppresses onset of tropical thermodynamic driven convection.
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Composite of soil l;qgisture for SGP dry years
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Is there spring to summer drought memory?

Observations show that 13 out of 16 severe-to-
extreme summer droughts over the SC US since
1895 are linked to dry spring. Only two springs
(drought years of 1971 and 1996) are not followed
by a dry summer.

On the other hand, dynamic models cannot
maintain the initial dry soil moisture anomalies in
spring for more than 2 monthes.




What mechanisms could maintain or re-
enforce dry soil moisture memory from
spring to summer?




Could dry soil moisture anomalies re-enforce anomalous mid-
tropospheric high?

Lead lag correlation between soil moisture and
500 hPa geopotential height anomalies (MJJ) over the Southern Plains
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* Lack of deep convection in spring appears to set stage for
summer dryness.
Specific humidify anomaly (kg/kg) for 2010-2011 Deep cyclonic
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How does spring dryness influence large-scale circulation?

* The negative diabatic heating anomalies in 2011 is mainly contribute by
increasing radiative cooling (OLR) due to decrease of cloudiness and
atmospheric humidity in Jan-Apr, by decrease of latent heating of rainfall
in May and June.

dQ in 2011 calculated from NARR and NCEP/NCAR reanalyses

I I I I
Aug Sep Oct Nov Dec



Is it possible to provide an early warning of the
summer drought based anomalous large-scale
atmospheric and land surface conditions in spring?




Challenges for seasonal prediction of summer drought:

e Seasonal forecast unable to
predict major summer c 2500 (JJA)
droughts in recent years, and

does not show more skill
than autocorrelation (Guan
et al. 2012; Hoerling et al. I
2013). W S
* Current (CMIP5) climate Winter:
models have large a Z500 (DJF) b £500 (MAM)
uncertainty in simulating 1.5 15 ot o SPring

summer rainfall, and large
scale circulation over US
Southern Great Plains (SGP). 05

* Can we use dynamic PR
prediction in winter and NCEP1
spring and empirical model
to predict summer drought?
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Statistical model

1. First run a Multivariate EOF analysis on the three predictor
variables

a. April 27500 hPa CFSR
b. April CIN proxy (T700-Tdsurf) from CFSR

c. April soil moisture CFSR

2. Retain first two EOF modes accounting for ~90% of variance for
rotation. Input the two rotated EOF modes as predictor variables
to a Canonical Correlation Analysis to predict July SP16. Use the
Climate Predictability Tool (CPT) developed at IRl to run CCA.

3. 24-year training period (1/3 left for validation). 3-year cross-
validation window. Model fitted with cross-validated error

variance. 1982-2005 as climatological period.




Drought early warning indicator shows higher skill
than the baseline and the dynamic prediction

Drought indicator skill comparison: Spearman’s correlation (obs vs. pred)

Correlation between observed Baseline, autocorrelation of
and predicted July SPI6 the observed SPI6, Lyon et al

NOAA CFSV2 Dynamic
prediction, Quan et al
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Hindcasts qualitatively capture the general
pattern of the 2011 and 2013 summer drought

July 2013 predicted

July 2011 predicted

SPI6 actual values

Forecast July SPI6 (2011)
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2014 forecast July SPI6

Prediction from April fields

Predicted Standard Precipiation Index ending at 201407
Six Months, Average of 20 Members

Probabilistic forecasts for July SPI6 (Apr fields)
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Summary and Implication:

Most of La Ninas do not lead to summer drought over SGP. Anomalous
anticyclonic circulation in spring and resultant dry soil moisture anomalies
appear to be critical in set the stage for summer drought over SC US.

Strong spring soil moisture deficit can reduce convection, cloudiness and
atmospheric humidity. The resultant increase of longwave cooling could
have stronger contribution to the subsidence and mid-tropospheric high
anomalies in spring than reduced rainfall latent heating. Such radiative
feedback, along with soil moisture-rainfall feedbacks could further re-
enforce the initial dry large-scale circulation and soil moisture anomalies,
consequently remain dry memory from spring to summer.

Empirical model hindcasts show better skill than the baseline prediction of
SGP. Thus, the spring to summer drought memory could provide additional
predictability for summer drought relative to that provided by SSTA alone.




Implication:

* More clear understanding on the causes of the spring
anomalous circulation, and soil moisture and cloud/water
vapor radiative feedbacks during spring to summer
transition period may lead to significant improvement in
seasonal prediction of summer drought in SGP.




